Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors.

نویسندگان

  • Karolina Piecyk
  • Maciej Lukaszewicz
  • Edward Darzynkiewicz
  • Marzena Jankowska-Anyszka
چکیده

Synthetic analogs of the 5' end of mRNA (cap structure) are widely used in molecular studies on mechanisms of cellular processes such as translation, intracellular transport, splicing, and turnover. The best-characterized cap binding protein is translation initiation factor 4E (eIF4E). Recognition of the mRNA cap by eIF4E is a critical, rate-limiting step for efficient translation initiation and is considered a major target for anticancer therapy. Here, we report a facile methodology for the preparation of N2-triazole-containing monophosphate cap analogs and present their biological evaluation as inhibitors of protein synthesis. Five analogs possessing this unique hetero-cyclic ring spaced from the m7-guanine of the cap structure at a distance of one or three carbon atoms and/or additionally substituted by various groups containing the benzene ring were synthesized. All obtained compounds turned out to be effective translation inhibitors with IC50 similar to dinucleotide triphosphate m(7)GpppG. As these compounds possess a reduced number of phosphate groups and, thereby, a negative charge, which may support their cell penetration, this type of cap analog might be promising in terms of designing new potential therapeutic molecules. In addition, an exemplary dinucleotide from a corresponding mononucleotide containing benzyl substituted 1,2,3-triazole was prepared and examined. The superior inhibitory properties of this analog (10-fold vs. m(7)GpppG) suggest the usefulness of such compounds for the preparation of mRNA transcripts with high translational activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes

Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5',5'-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer ce...

متن کامل

A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry.

The significant biological role of the mRNA 5' cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which...

متن کامل

Specificity of recognition of mRNA 5' cap by human nuclear cap-binding complex.

The heterodimeric nuclear cap-binding complex (CBC) binds to the mono-methylated 5' cap of eukaryotic RNA polymerase II transcripts such as mRNA and U snRNA. The binding is important for nuclear maturation of mRNAs and possibly in the first round of translation and nonsense-mediated decay. It is also essential for nuclear export of U snRNAs in metazoans. We report characterization by fluorescen...

متن کامل

Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential

Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5' end of mRNA (m7Gppp-RNA). We report a novel class ...

متن کامل

Design, Molecular Docking Studies and Toxicity Prediction of Some Novel 1, 2, 3-Triazole Derivatives Containing Piperazine Moiety as Antifungal Agents and CYP-51 Inhibitors

Background & Objective: In this study, a number of new triazole derivatives, containing a 1, 2, 3-triazole ring attached to the piperazine moiety as antifungal agents and lanosterol 14 alpha-demethylase, (CYP51) inhibitors were docking studies conducted. In the following, the toxicity risks of the designed compounds, were predicted by existing software. Materials & methods: Initially, the chemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2014